New equilibria of non-autonomous discrete dynamical systems
نویسندگان
چکیده
In the framework of non-autonomous discrete dynamical systems in metric spaces, we propose new equilibrium points, called quasi-fixed and prove that they play a role similar to fixed points autonomous systems. this way some sufficient conditions for convergence iterative schemes type xk+1=Tkxk spaces are presented, where maps Tk contractivities with different points. The results include any reordering maps, even repetitions, forward backward directions. We also generalizations Banach point theorems when self-map is substituted by sequence theory presented links field iterated function cases set an invariant fractal set. hypotheses relax usual on underlying space existence sets countable
منابع مشابه
a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولNew Strange Attractors for Discrete Dynamical Systems
A discrete dynamical system in Euclideanm-space generated by the iterates of an asymptotically zero map f , satisfying |f(x)| → 0 as |x| → ∞, must have a compact global attracting set A. The question of what additional hypotheses are sufficient to guarantee that A has a minimal (invariant) subset A that is a chaotic strange attractor is answered in detail for a few types of asymptotically zero ...
متن کاملstudy of bifurcation and hyperbolicity in discrete dynamical systems
bifurcations leading to chaos have been investigated in a number of one dimensional dynamical systems by varying the parameters incorporated within the systems. the property hyperbolicity has been studied in detail in each case which has significant characteristic behaviours for regular and chaotic evolutions. in the process, the calculations for invariant set have also been carried out. a bro...
متن کاملPeriodic solutions of second order non-autonomous singular dynamical systems
In this paper, we establish two different existence results of positive periodic solutions for second order non-autonomous singular dynamical systems. The first one is based on a nonlinear alternative principle of Leray–Schauder and the result is applicable to the case of a strong singularity as well as the case of a weak singularity. The second one is based on Schauder’s fixed point theorem an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos Solitons & Fractals
سال: 2021
ISSN: ['1873-2887', '0960-0779']
DOI: https://doi.org/10.1016/j.chaos.2021.111413